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Abstract. It is shown that a polarized microwave radiation creates directed transport in an asymmetric
antidot superlattice in two dimensional electron gas. A numerical method is developed that allows to
establish the dependence of this ratchet effect on several parameters relevant for real experimental studies.
It is applied to the concrete case of a semidisk Galton board where the electron dynamics is chaotic in
the absence of microwave driving. The obtained results show that strong currents can be reached at a
relatively low microwave power. This effect opens new possibilities for microwave control of transport in
asymmetric superlattices.

PACS. 05.45.Ac Low-dimensional chaos – 05.60.-k Transport processes – 72.40.+w Photoconduction and
photovoltaic effects

1 Introduction

The appearance of a directed transport induced by radia-
tion in asymmetric systems is known as the photogalvanic
effect. By this effect the radiation creates charge trans-
port in the bulk of the asymmetric structure in absence
of any applied dc-voltage. The theoretical investigations
of this phenomena have been started almost 30 years ago
in references [1,2]. The interest to this subject has been
renewed recently with the studies of ratchets that appear
when a system is displaced from thermal equilibrium by
a periodic variation of system parameters (for reviews see
references [3,4]). These parameters can be treated as gen-
eralized forces. One of the surprising properties of ratchets
is that a zero mean force can still produce a directed flow
of particles. This phenomenon has a generic origin and
appears in various physical systems including vortices in
Josephson junction arrays [5–7], cold atoms [8], macrop-
orous silicon membranes [9], microfluidic channels [10] and
other systems.

Nowadays technology allows to prepare artificial anti-
dot superlattices in semiconductor heterostructure with
two dimensional electron gas (2DES). The conduction
properties of these samples has been tested in experi-
ments [11,12] which showed an important contribution
of periodic orbits. The structure of these superlatticies
is similar to a periodic lattice of rigid disks placed on a
plane. Such structures are known as Galton boards [13]
or Lorentz gas. According to the mathematical results
of Sinai the dynamics on such a lattice is completely
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chaotic [14]. The theoretical studies [15] performed to un-
derstand these experiments showed that the chaotic clas-
sical dynamics and periodic orbits significantly affect the
conduction properties in such superlatticies.

The effect of a microwave radiation on the conduction
properties of an antidot superlattices has been addressed
in experiments [16]. However in these structures due to
the symmetry of the superlattice the ratchet effect was for-
bidden. Asymmetric mesoscopic structures under external
periodic driving have been studied experimentally in [17].
However zero mean force ratchet was absent due to low
frequency of driving which was essentially adiabatic [18].

The recent theoretical studies of dissipative transport
in asymmetric superlatticies showed that microwave radia-
tion induces directed transport in such systems (zero mean
force ratchet) [19,20]. These works were mainly performed
for a semidisk Galton board which is obtained from the
usual Galton board of rigid disks by replacing each disk
with semidisk oriented in one fixed direction (see Fig. 1).
In reference [19] the model of a friction force ff = −mγv
with constant friction coefficient γ has been used for a par-
ticle of mass m moving with velocity v. In reference [20]
the case of particles in a Maxwell thermostat at tempera-
ture T was considered. It was shown that the thermostat
creates an effective friction coefficient γ which depends
on the microwave field strength and the temperature of
the thermostat. However the most interesting case is the
Fermi-Dirac thermostat since it describes the experimen-
tal conditions of antidot superlatticies with 2DES [21].
Until now no numerical studies were performed in this
regime. Only theoretical estimates have been proposed in
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Fig. 1. (Color online) Example of the semidisk Galton board
with one chaotic trajectory in the region −5.5 ≤ x ≤ 1.5 and
19 ≤ y ≤ 26. Semidisk scatterers, separated by a distance R =
2, are shown in black. The trajectory is displayed in red/gray.
The strength of microwave radiation and its frequency are f =
5, ω = 1, polarization angle θ = 0 and temperature T = 0.1EF .
Here and in other figures EF = 10 and disk radius rd = 1. The
Metropolis algorithm parameters are ∆E/EF = 0.075, ∆t =
0.005.

reference [20]. Their validity was never checked and re-
mains questionable.

In this work I develop a numerical method which al-
lows to study the directed transport induced by polarized
microwave radiation f = f(cos θ, sin θ) cos(ωt) in 2DES at
various values of the Fermi energy EF and temperature T
(here ω is the radiation frequency and θ is the polarization
angle with respect to the x axis in Fig. 1). On the basis
of this method I performed extensive numerical studies
which allowed to establish the dependence of ratchet flow
velocity vf on various system parameters including T and
EF . Contrary to the estimates proposed in reference [20]
the dependence on T is weak when T � EF . The ob-
tained results allow to predict typical values of currents
in asymmetric antidot superlattices.

The paper is organized as follows, in Section 2 the de-
scription of the model and of the numerical method is
presented, the results are described in Section 3, and con-
clusion is given in the last section.

2 Model description

The geometry of the model is represented by a Galton
board of semidisks which form a two-dimensional hexago-
nal lattice as shown in Figure 1. The radius of the semidisk
is rd and the distance between the disk centers is R. A
particle with mass m moves under the action of the elec-
tric force f of a polarized microwave radiation. The col-
lisions with the semidisks are elastic. In the numerical
simulations I use dimensionless units with m = rd = 1
and the Fermi energy EF = 10 (thus the Fermi veloc-
ity VF =

√
20). In order to convert the numerical results

obtained with this units, one should determine the dimen-
sionless ratios: for example in Figure 1 the frequency ω = 1

Fig. 2. (Color online) Energy distribution functions fn(E)
obtained numerically for different field amplitude values f and
different temperatures T . For the green, black and red curves
the temperatures are T/EF = 0.01, 0.1, and 0.4 respectively
(at E/EF = 1.1 the order of curves is from bottom to up).
The applied force f is zero for the dashed curves and f = 5
for the full curves (ω = 1, θ = 0, R = 2). At f = 0 the dashed
curves coincide with the Fermi-Dirac distribution fF (E) at cor-
responding temperature T . The Metropolis algorithm param-
eters are the same as in Figure 1.

and field strength f = 5 corresponds to dimensionless val-
ues ω̃ = ωrd/VF = 1/

√
20. and f̃ = frd/EF = 1/4.

It is assumed that particles are non interacting but
that the contact with a thermostat creates the Fermi-
Dirac distribution fF (E) = 1/(EF [exp((E−EF )/T )+1])
at temperature T and Fermi energyEF , where E is a parti-
cle kinetic energy. Here the energy distribution for one par-
ticle fF (E) is normalized by the condition

∫
fF (E)dE =

1. This single particle distribution gives also the result for
many particles by simple rescaling by the number of par-
ticles as it is usually done for 2DES (see [21], p. 193). Such
a situation corresponds to experiments with 2DES in anti-
dot lattices similar to those of references [11,12]. To keep
particles in a thermal equilibrium with the Maxwell distri-
bution it is possible to use various methods including the
Nosé-Hoover thermostat used in reference [20]. However
for the Fermi-Dirac thermal distribution this method is
not appropriate and a new approach should be developed.
Indeed the Nosé-Hoover equations are constructed in such
a way that they give the Maxwell distribution in particle
velocities [22,20]. They should be significantly modified to
generate the Fermi-Dirac distribution and until now this
problem has not been addressed yet. The first attempt by
the authors of reference [20] did not succeed in achieving
a good convergence to the Fermi-Dirac distribution [23].

My approach is inspired by the successful Monte Carlo
method adapted to simulate numerically the transport
properties in semiconductor devices [24]. To obtain a sta-
ble Fermi-Dirac distribution of particles on the semidisk
Galton board (see Fig. 1) the following procedure has been
applied: (i) the equations of motion were integrated ex-
actly on the time interval ∆t using the analytical solu-
tion; (ii) after that the particle energy is changed from its
value E to another value in the interval (E−∆E,E+∆E)
without changing the direction of the particle momentum.
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The choice of this value is governed by the Metropo-
lis algorithm [25] which imposes the convergence to the
Fermi-Dirac distribution fF . Namely, a random value
E′ is chosen in (E − ∆E,E + ∆E), with probability
min(fF (E′)/fF (E), 1) the algorithm sets E = E′, oth-
erwise E remains unchanged. Afterward the algorithm re-
turns to step (i). The times when collisions with semidisks
occur are found with the precise Newton algorithm as in
reference [19]. The step ∆E can be considered as a ther-
malization step which determines the rate of convergence
to the equilibrium distribution fF .

The Metropolis algorithm described above ensures the
convergence to the equilibrium distribution fF in the ab-
sence of microwave radiation. The examples of steady
state distributions at different temperatures T are shown
in Figure 2. The proximity of the numerically obtained
distribution fn(E) to the theoretical steady state fF (E)
can be characterized by the dimensionless mean square
deviation σ = EF

∫
(fn(E)−fF (E))2dE. This quantity re-

mained small in all numerical simulations at f = 0 show-
ing a good convergence to the Fermi-Dirac distribution
(e.g for the cases of Figure 2: σ = 1.8 × 10−5, 2.3 × 10−5

and 8.3 × 10−5 for T/EF = 0.4, 0.1, 0.01 respectively).
In the abscence of microwave field driving the Metropolis
algorithm reproduces the Fermi-Dirac distribution with
high accuracy therefore the heat capacity of the simu-
lated 2DES is in agreement with the usual relations for the
Fermi gas and is linear in temperature [26,27]. Special nu-
merical checks have shown that a weak static electric field
creates a stationary current and that the low frequency
conductivity σ0 obtained numerically is in agreement with
the Drude formula σ0 = nee

2τ/m which is valid for a de-
generate Fermi gas [26,27]. For quantum systems the exact
expression of the conductivity is given by the Kubo for-
mula, which leads to the classical Drude result in the case
of a Fermi gas at high quantum numbers [28]. At last, al-
though the Metropolis algorithm has been introduced in
a formal way in order to guarantee the convergence to the
Fermi-Dirac statistics, it can be considered as an approx-
imation of the electron relaxation at low temperatures.
Indeed in real metals the energy distribution function is
controlled by electron-electron and electron-phonon scat-
tering, which conserve the direction of motion but loose
energy. The later property is also present in the proposed
method.

However, the introduction of the microwave radiation
modifies the distribution fn which depends on f and other
system parameters. This is clearly seen in the typical cases
presented in Figure 2. For relatively high temperatures the
distribution fn remains a smooth monotonic function of
energy whereas at low T the microwave field creates a
characteristic peak near the Fermi energy EF . As a re-
sult the developed numerical method allows to study the
transport created by microwave radiation in an asymmet-
ric semidisk Galton board in the stationary regime. To be
close to realistic experimental situations additional ran-
dom scattering has been introduced to take into account
the effect of impurities. Namely after time τi the direction
of particle momentum is changed randomly (angle changes

Fig. 3. (Color online) Directed transport for one trajectory at
various polarizations of radiation θ = 0, π/5, π/4, π/2 (from
left to right clockwise), other parameters are set as in Figure 1.

in the interval [0, 2π]). In the majority of cases studied the
value τi was kept sufficiently large (τiVF /rd > 1000) and
did not influence the stationary transport properties (the
dependence on τi will be discussed in the next section).
Here VF =

√
2EF is the Fermi velocity.

This stationary regime, which sets in presence of ra-
diation, clearly shows the photogalvanic (ratchet) effect
with directed transport born from chaos as it is shown in
Figure 3 for different polarization angles θ. I would like
to stress that this effect originates from the bulk of the
sample; it is known that radiation can lead to the appear-
ance of electron-hole pairs, which may diffuse to different
contacts because of the electric field in the depletion re-
gion of the junction, however in this case the effect is due
to the contacts and not to the bulk of the sample. For
θ = 0 the transport is directed to the left (negative di-
rection on the x axis), while for θ = π/2 the transport
is oriented to the right. The polarization dependence is
similar to that obtained in previous works [19,20] and is
well described by the relation ψ ≈ π − 2θ where ψ is the
angle between the transport direction and the x axis. In
this way the average velocity of transport can be writ-
ten as vf = vf (cosψ, sinψ). It is calculated by following
a single trajectory for a long typical time tVF /rd ∼ 107.
It was also checked that the averaging over an ensemble
of few tens of different trajectories gives statistically the
same result.

Special checks have been made to ensure that the
ratchet velocity vf does not depend on the Metropolis al-
gorithm parameters. An example of such checks is shown
in Figure 4 where the thermalization step∆E was changed
by one order of magnitude. In spite of this variation the
value of vf remains stable. It was also checked that the
resulting ratchet velocity is not sensitive to variation of
∆t, e.g a variation of ∆t by more than one order of mag-
nitude gave no variation of vf within a 5% accuracy. Phys-
ically it is possible to say that the relaxation time to
the equilibrium τrel is approximately given by the rela-
tion τrel ∼ ∆tE2

F /∆E
2. Thus, the numerical checks above

can be physically interpreted as the independence of the
ratchet velocity on the variation of the energy relaxation
timescale τrel which varied by two orders of magnitude.
A similar effect has been seen with the Nosè-Hoover ther-
mostat for the Maxwell equilibrium distribution [20]. This
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Fig. 4. (Color online) The ratio of flow velocity vf to the Fermi
velocity VF as a function of the thermalization step ∆E for a
fixed ∆t = 0.005. The different curves correspond to values of
f : f = 7.0, 6.0, 5.0, 4.0, 3.0 with respective colors: violet, blue,
green, red, black (from top to bottom at ∆E/EF = 0.2). The
symbols mark the temperature T/EF = 0.01 (squares) and
T/EF = 0.1 (circles). Other parameters are as in Figure 1.

result is also in a qualitative argument with the theoreti-
cal arguments given in references [1,2] according to which
τrel does not directly affect vf . In my further simulations
the Metropolis algorithm parameters are set to typical val-
ues ∆E/EF = 0.075, ∆t = 0.005. The data shown in Fig-
ure 4 clearly demonstrate that vf grows with the radiation
strength f . At the same time vf is not very sensitive to the
variation of temperature T . Detailed studies of parameter
dependence of vf are presented in the next section.

The results presented above show that in the absence
of electron-electron interactions, the developed algorithm
allows to simulate the electron dynamics at thermal equi-
librium with the Fermi-Dirac distribution. The microwave
driving is assumed to be relatively weak so that it gives
only small deviations from the unperturbed distribution,
this fact is clearly illustrated in Figure 2. In this regime
the perturbed distribution of particles is determined by
the unperturbed distribution fF (E) and the microwave
field, the effect of the latter is exactly taken into account
by the Hamiltonian equations of motion. Therefore the de-
veloped algorithm should correctly describe the non equi-
librium steady state distribution that emerges under mir-
crowave driving. This is indirectly confirmed by the fact
that the directed transport is not sensitive to the thermal-
ization step of the Metropolis algorithm (see Fig. 4). In
a sense the Metropolis steps combined with the Hamilto-
nian equations of motion give the solution of the kinetic
Boltzmann equation in the presence of microwave driving.

The above arguments should be also valid for another
unperturbed thermal distribution, e.g the Maxwell dis-
tribution fM (E) = exp(−E/T )/T . This case was ana-
lyzed in reference [20] on the basis of Nosé-Hoover equa-
tions. In fact the Metropolis algorithm had been invented
to treat the Maxwell thermal equilibrium [25]. Thus, I
made numerical tests with the Metropolis algorithm for
the Maxwell distribution. The obtained results reproduce
the functional dependences found in reference [20] (see
Eqs. (4, 5) there) with approximately the same values of

the numerical constants. This gives independent confirma-
tion that the Metropolis algorithm treats correctly a weak
external perturbation that drives the system out of equi-
librium. It also shows that various thermal distributions
can be treated by this method.

The model I described assumes that the electrons are
non interacting. To be valid it requires that the Coulomb
interaction between electrons in 2DES Eee ≈ e2

√
πne/εr

is small compared to the kinetic energy given by EF =
πne�

2/m. Here ne is the electron density, εr is the di-
electric constant, e is the electron charge and m is the
effective electron mass. Thus the effective strength of in-
teraction is characterized by the dimensionless parame-
ter rs = Eee/EF [29] which should be small. Its value
for experimental 2DES obtained in GaAs/AlGaAs het-
erostructure with electron densities ne ≈ 1012 cm−2, an
effective electron mass m ≈ 0.065me and dielectric con-
stant εr = 13 is approximately rs ∼ 1. At such values
the interaction between quasiparticles is considered to be
weak and is usually neglected in a first approximation [21,
29], for example the Wigner crystal typically appears at
rs ≈ 37.

At such densities ne inside a cell of size S = 1 µm2

the quantum level number of an electron at the Fermi
energy is NF = neS ∼ 104. Therefore electrons are in a
deep semiclassical regime and the classical Monte Carlo
approach used above is well justified, see also [24].

3 Numerical results

I have investigated the dependence of vf on several sys-
tem parameters which are relevant for a realistic exper-
iments with 2DES in antidot lattices. Among them are
the temperature T , the microwave field strength f and
the microwave frequency ω. The effects of geometry are
studied by changing the lattice constant R that allows to
choose the optimal regime where the photogalvanic effect
is stronger. The effects of impurity scattering is modeled
by variation of scattering time τi that gives insight on the
stability of the effect in respect to experimental imperfec-
tions. At last the effect of magnetic field is also analyzed.

The temperature dependence for a typical set of pa-
rameters is given in Figure 5. The obtained numerical
data show that there is a weak drop of the ratchet ve-
locity vf with the increase of temperature T . However in
the regime with T � EF , vf is practically temperature
independent. This dependence is preserved for various ra-
diation strengths f . The velocity of transport increases
with the growth of f . A detailed study of the effect de-
pendence on the microwave field f is presented in Figure 6.
It shows that the dependence on f is quadratic in the re-
gion T � EF , and temperature independent in a large
interval of field strength. At higher f a deviation from the
quadratic dependence starts to be visible, this deviation
starts earlier at high temperatures. Thus on the basis of
the results presented in Figures 5, 6 it is possible to con-
clude that at T � EF and in the limit of weak driving
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Fig. 5. (Color online) Top panel: dependence of the rescaled
flow velocity vf/VF on the rescaled temperature T/EF , differ-
ent curves correspond to f = 7.0, 6.0, 5.0, 4.0, 3.0 (from top to
bottom). Bottom panel: the same data are shown as a function
of EF /T . Here ω = 1, R = 2, θ = 0.

the flow velocity is described by the relation:

vf/VF = C(rdf/EF )2. (1)

Here the dimensionless factor C may depend on the mi-
crowave frequency, lattice geometry, and impurity scat-
tering time. However it is independent of T and f . For
R = 2, ωrd/VF � 1 and τiVF /rd � 1 the obtained data
give C = 0.129± 0.002.

The dependence (1) is qualitatively different from the
theoretical estimates proposed in reference [20]. To un-
derstand the origin of this difference I remind the main
elements of estimates given in references [19,20]. They
are based on the fact that the microwave radiation pro-
duces diffusive energy growth of electron energy in time
with the rate: DE = (δE)2/δt. Here δE is the energy
variation after a time δt. In the limit of low frequency
driving it is possible to write DE ∼ (Ė)2τc ∼ f2VF l
where E is the particle energy and l is the mean free
path which is l ∼ R2/rd. If a particle would experience
a friction force ff = −mγv, the diffusion in energy would
give energy variation (δE)2 ∼ DE/γ. In reference [20]
it was assumed that δE is fixed by the thermal distri-
bution so that δE ∼ T . Thus the statistical station-
ary distribution imposes an effective friction with coeffi-
cient γ ∼ DE/T

2. This relation is important because the
ratchet velocity is given by relation vf ∼ lγ in the limit

Fig. 6. The rescaled flow velocity vf /VF as a function
of rescaled applied force rdf/EF for different temperatures:
T/EF = 0.4 (green diamonds), 0.1 (blue squares), 0.01 (black
circles). The red (full gray) curve shows a parabolic fit of data
vf/VF = C (rdf/EF )2 with C = 0.129±0.002 at T/EF = 0.01
(the fit is done in the interval [0, 0.45]). Here ω = 1, R = 2,
θ = 0.

of weak friction as it has been shown in reference [19] by
extensive numerical simulations. For the Maxwell distri-
bution this gives vf ∼ (lf)2/T 3/2m1/2 since in this case
DE ∼ f2(T/m)1/2l, where it is used that the thermal ve-
locity v ∼ √

T/m. The extension of the above arguments
to the Fermi-Dirac distribution led the authors of [20] to
the conclusion that vf/VF ∼ C(fl/T )2. However this ex-
pression is drastically different from equation (1) accord-
ing to which there is no temperature dependence in the
limit T � EF . This contradiction can be resolved if the
variation of particle energy induced by the radiation is of
the order δE ∼ EF (and not δE ∼ T ). Indeed in the free
electron model the particle can move in the whole energy
interval defined by the Fermi energy whereas in the esti-
mates in reference [20] it was assumed that the particle
can move only in the narrow thermal layer near the Fermi
surface. In the free particle model it is therefore rather
natural that the particle energy variation is δE ∼ EF ,
that leads to the result of equation (1).

The fact that the free electron model remains valid
in the presence of microwave driving can be also under-
stood from the following arguments. For non interacting
electrons the Hamiltonian is given by the sum of one par-
ticle operators (microwave driving is also one particle op-
erator). Hence, the many particle state (wave function or
density matrix) is obtained simply from one particle states
by antisymmetrization. Thus, the Pauli principle can be
taken into account by averaging the final one particle re-
sults over the Fermi-Dirac distribution. This statement
also explains the validity of the classical kinetic Boltzmann
equation for the description of transport properties of met-
als. It is demonstrated more rigorously in (Chap. 5 in
Refs. [21] and [30]). As a result the limit of weak interac-
tions the Pauli principle does not affect the semiclassical
dynamics of the electrons and the arguments presented in
reference [20] are not valid at least for weak rs values.

It is important to stress that the same question has
been considered in microscopic models of heavy ions
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collisions [31], in laser ionization of metallic clusters [32]
and in solid state physics [26,27]. It has been shown (see
e.g. [31]) that in the quantum case the distribution func-
tion fV (r,p, t) of the fermions obeys the Vlasov-Ühling-
Uhlenbeck equation that reads:

∂fV

∂t
+ v

∂fV

∂r
+ F(r, t)

∂fV

∂p
= Icc (2)

where F(r, t) is an external time dependent Hamiltonian
force like a microwave driving and Icc is the collision in-
tegral that takes into account electron-electron interac-
tions and other inelastic effects. It explicitly takes into
account the Pauli blockade by the mean of (1 − fV ) fac-
tors. It should be stressed that the effects of microwave
driving are taken into account in the left side of the equa-
tion where Pauli blockade is absent which is reflected by
the absence of the (1 − fV ) factors. In the case of weak
inelastic scattering and weakly interacting electrons, as
considered here (in fact non interacting 2DES is treated
in this model), the collision integral can be written in
the τ approximation [26] as Icc = −(fV − f0)/τ where
f0 is the Fermi-Dirac distribution and τ gives the relax-
ation time to equilibrium. This expression becomes exact
in the limit of weak interaction and high quantum num-
bers. This corresponds exactly to the situation analyzed
here where electron-electron interaction is weak (rs < 1)
and the quantum numbers of electrons in one cell are very
high NF ∼ 104. In this case the Fermi-Dirac statistics
appears only through the equilibrium distribution f0 and
Pauli blockade does not affect the dynamics. This fact has
been analyzed in great detail in [31,32]. The Metropolis
algorithm effectively simulates equation (2), indeed the
left side is taken into account exactly via the dynamical
equations of motion while the Metropolis steps ensure an
exponential decay to the equilibrium distribution f0 as in
the τ approximation.

The estimates based on the interplay between diffusive
energy excitation and dissipation allow to understand the
physical origin of the relation between the ratchet veloc-
ity and effective friction coefficient induced by microwave
radiation that perturbs the system out of thermal equi-
librium. Another approach has been developed recently
in reference [33] using perturbation theory for the Boltz-
mann kinetic equation in the limit of weak radiation and
weak density of randomly distributed asymmetric scatter-
ers, the kinetic equation is written in the τ approximation
and has the form of equation (2). The model proposed
in reference [33] is rather different from the one consid-
ered here, e.g. scatterers are distributed randomly on the
plane, their density is required to be small and impurity
scattering is necessary for the regularization of the model.
However in spite of these differences the global depen-
dence of ratchet velocity on Fermi energy EF and radia-
tion strength f is the same as in equation (1). In particular
the temperature dependence is absent for T � EF that
corresponds to the absence of Pauli blockade and to the
numerical results obtained here.

The frequency dependence of vf/VF is shown in Fig-
ure 7. The data presented there demonstrate that the

Fig. 7. (Color online) Dependence of rescaled flow veloc-
ity vf/VF on the rescaled microwave frequency ωrd/VF , for
T/EF = 0.01, f = 5.0 (red squares); T/EF = 0.1, f = 5.0
(green circles); and T/EF = 0.01, f = 3.0 (black triangles,
in this case vf is multiplied by factor (5/3)2 to underline
quadratic dependence on f). Here R = 2, θ = 0.

frequency spectrum is independent of temperature (for
T � EF ) and that quadratic dependence on f is valid
for a large frequency range. The spectral dependence has
a few characteristic features. For ωrd/VF � 1 the ratchet
velocity becomes independent of ω, that is in agreement
with the fact that DE ∝ vf is independent of ω. This has
been also seen in models analyzed in references [19,20].
For ωrd/VF � 1 the ratchet velocity drops with ω. This is
consistent with the dependence of DE on ω which in this
limit can be estimated as DE ∼ f2V 3

F /ω
2l. This comes

from the fact that at high frequency the change of veloc-
ity after one collision with semidisks is ∆v ∼ f/ωm so
that the energy is changed by δE ∼ VF f/ω after a time
between two collisions δt ∼ l/VF (l ∼ rd for R ∼ rd and
l ∼ R2/rd for R � rd). The frequency dependence shown
in Figure 7 has also a resonance at ωrd/VF ≈ 3. This
is probably related to high frequency collisions in narrow
bottle necks between two semidisks (see Fig. 1 where the
narrow bottle neck is approximately by a factor of three
smaller than disk radius).

The dependence of vf on the distance between disk
centers R is shown in Figure 8. Initially vf starts to grow
with R then reaches a maximum value and drops at large
R values. The position of the maximum depends on the
microwave frequency. With the increase of frequency the
maximum moves to smaller values of R. Qualitatively
this corresponds to the situation when the microwave fre-
quency becomes comparable with the frequency of colli-
sions of particles with semidisks. The dependence of data
on parameters can be satisfactory described by a fit for-
mula:

vf/VF = A
R2f2

E2
F

1
1 +B(ωR2/rdVF )2

. (3)

Here A,B are dimensionless fitting parameters. The fit
for three values of ω in Figure 8 gives A ≈ 0.017 and
B ≈ 0.012. For ω → 0 this expression is in a satisfactory
agreement with the value C ≈ 0.13 found in Figure 6 at
R = 2. The physical origin of this fit is related to frequency
dependence of the diffusion rate DE which interpolates
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Fig. 8. Dependence of vf/VF on the rescaled distance between
semidisk centers R/rd for different frequency values ω = 1, 1.5,
2.0 (curves from top to bottom). The smooth curve shows the
fit of equation (2) for ω = 1 with A = 0.017, B = 0.012. Here
f = 5.0, ω = 1, θ = 0, T/EF = 0.1.

between the low frequency regime (DE independent of ω)
and the high frequency regime where DE drops quadrat-
ically with ω (see estimates given above). Equation (2)
gives reasonable description of obtained numerical data in
the regime where l is not too large compared to R. This
situation is most interesting for direct experimental stud-
ies where R is not very large compared to rd.

Another important experimental parameter is the scat-
tering time induced by impurities which are always present
in real samples. The data presented in previous figures
were obtained in the regime of very large τi. The effect of
finite values of τi on the ratchet velocity is described in
Figure 9 for various lattice constants R. The data show
that at large τi values vf is independent of the impurity
scattering time while at small τi, vf/VF drops approxi-
mately linearly with τiVF /rd. Indeed the asymmetry of
semidisks is washed out by impurity scattering and the
ratchet effect should disappear at small τi. At the same
time it is important to stress that the presence of impu-
rities is not necessary for the onset of directed transport.
In experimental conditions τi can depend on temperature
because of electron-phonon scattering or electron-electron
interactions which give a dependence of τi on T . This may
lead to a significant temperature dependence of the photo-
galvanic effect at higher temperatures where the electron-
phonon scattering starts to play a major role.

Experimentally it is also possible to study the de-
pendence of the effect on magnetic field B perpendicu-
lar to the 2DES plane. To investigate this dependence the
method described above was adapted to the presence of
a magnetic field, which was included in the analytical so-
lution of motion equations between Metropolis thermal-
ization steps. The magnetic field dependence is given in
Figure 10. The data clearly shows that the ratchet effect
disappears for sufficiently strong magnetic fields when the
Larmor radius rl = VF /B becomes smaller than the dis-
tance R between semidisks (here electron charge and mass
are set to 1). Indeed for rl � R the classical electron dy-
namics becomes integrable and the diffusion rate in energy

Fig. 9. (Color online) Dependence of vf/VF on the rescaled
impurity scattering time VF τi/rd for R/rd = 6.0, 4.0, 3.0, 2.0
(from top to bottom respectively at VF τi/rd = 50). Here f =
5.0, ω = 1, θ = 0, T/EF = 0.1.

Fig. 10. (Color online) Dependence of vf/VF on the rescaled
magnetic field rdB/VF for R/rd = 4.0, 3.0, 2.0 (curves from
top to bottom at rdB/VF = 0). Here f = 5.0, ω = 1, θ = 0,
T/EF = 0.1.

DE goes to zero due to absence of chaos, thus leading to
the disappearance of ratchet (vf ∝ DE). In principle the
magnetic field changes the transport direction (angle ψ). I
do not discuss this dependence here since the main point
is that the ratchet effect disappears at relatively low B
(see below).

4 Conclusions

The obtained results clearly shows the existence of zero
mean force ratchet in asymmetric semiconductor struc-
tures induced by microwave radiation. They give the fol-
lowing dependence for the strength of the stationary cur-
rent induced by the ratchet effect in one row of semidisks
(row width

√
3R):

I =
√

3eneRvf = A

√
6
π2

f2

n
1/2
e

emR3

�3
(4)

where EF = πne�
2/m and m = 0.065me. This depen-

dence holds in the low frequency regime which is usu-
ally satisfied at typical electron densities ne = 1012 cm−2
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where the collision frequency is of the order of 200 GHz
for a R ∼ 1 µm and under the assumption R ∼ rd For
R = 1 µm and f/e = 1 V/cm, equation (3) gives the cur-
rent 0.1 nA. In samples with high mobility the mean free
path can have values as high as 5 µm, and therefore the
optimal regime for photogalvanic effect will be when R is
of the same order and it is quite possible that in this situa-
tion the current per row can be as high as 10 nA. Accord-
ing to the results of Figure 10 for R ∼ 1 µm the ratchet
effect starts to disappear at magnetic field B ∼ 0.1 T.

The asymmetric antidot lattice can be considered as
a prototype for transport in asymmetric molecular struc-
tures. The latter have attracted recently a significant in-
terest in view of possible biological applications of ratchets
[34]. Therefore experimental investigations on the ratchet
effect discussed in this paper are highly desirable.
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